Characterization of JAZ-interacting bHLH transcription factors that regulate jasmonate responses in Arabidopsis
نویسندگان
چکیده
The plant hormone jasmonate (JA) plays important roles in the regulation of plant defence and development. JASMONATE ZIM-DOMAIN (JAZ) proteins inhibit transcription factors that regulate early JA-responsive genes, and JA-induced degradation of JAZ proteins thus allows expression of these response genes. To date, MYC2 is the only transcription factor known to interact directly with JAZ proteins and regulate early JA responses, but the phenotype of myc2 mutants suggests that other transcription factors also activate JA responses. To identify JAZ1-interacting proteins, a yeast two-hybrid screen of an Arabidopsis cDNA library was performed. Two basic helix-loop-helix (bHLH) proteins, MYC3 and MYC4, were identified. MYC3 and MYC4 share high sequence similarity with MYC2, suggesting they may have similar biological functions. MYC3 and MYC4 interact not only with JAZ1 but also with other JAZ proteins (JAZ3 and JAZ9) in both yeast two-hybrid and pull-down assays. MYC2, MYC3, and MYC4 were all capable of inducing expression of JAZ::GUS reporter constructs following transfection of carrot protoplasts. Although myc3 and myc4 loss-of-function mutants showed no phenotype, transgenic plants overexpressing MYC3 and MYC4 had higher levels of anthocyanin compared to the wild-type plants. In addition, roots of MYC3 overexpression plants were hypersensitive to JA. Quantitative real-time RT-PCR expression analysis of nine JA-responsive genes revealed that eight of them were induced in MYC3 and MYC4 overexpression plants, except for a pathogen-responsive gene, PDF1.2. Similar to MYC2, MYC4 negatively regulates expression of PDF1.2. Together, these results suggest that MYC3 and MYC4 are JAZ-interacting transcription factors that regulate JA responses.
منابع مشابه
The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.
Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant ...
متن کاملThe bHLH Subgroup IIId Factors Negatively Regulate Jasmonate-Mediated Plant Defense and Development
Plants have evolved sophisticated systems for adaptation to their natural habitat. In response to developmental and environmental cues, plants produce and perceive jasmonate (JA) signals, which induce degradation of JASMONATE-ZIM-Domain (JAZ) proteins and derepress the JAZ-repressed transcription factors to regulate diverse aspects of defense responses and developmental processes. Here, we iden...
متن کاملRegulation of Jasmonate-Mediated Stamen Development and Seed Production by a bHLH-MYB Complex in Arabidopsis.
Stamens are the plant male reproductive organs essential for plant fertility. Proper development of stamens is modulated by environmental cues and endogenous hormone signals. Deficiencies in biosynthesis or perception of the phytohormone jasmonate (JA) attenuate stamen development, disrupt male fertility, and abolish seed production in Arabidopsis thaliana. This study revealed that JA-mediated ...
متن کاملUnwinding JAZ7 – enigma to harmony
JASMONATE ZIM-DOMAIN (JAZ) proteins are primary transcriptional repressors in the jasmonate (JA) signal-ing pathway that regulate a broad range of JA-dependent responses. A mechanistic mode of action is well established , but what are the biological roles of individual JAZs, and how do they contribute to the specification of JA signaling outputs? Two recent articles in Journal of Experimental B...
متن کاملComprehensive analysis of protein interactions between JAZ proteins and bHLH transcription factors that negatively regulate jasmonate signaling
Jasmonates have crucial roles in plant responses to biotic and abiotic stresses. Given the importance of transcriptional regulation in jasmonate-mediated stress responses, transcription factors are key regulators of jasmonate signaling. The transcription factors JASMONATE-ASSOCIATED MYC2-LIKE 1 (JAM1), JAM2, and JAM3 are negative regulators of jasmonate signaling, although the mechanisms that c...
متن کامل